Optimal pseudorandom sequence selection for online c-VEP based BCI control applications
نویسندگان
چکیده
BACKGROUND In a c-VEP BCI setting, test subjects can have highly varying performances when different pseudorandom sequences are applied as stimulus, and ideally, multiple codes should be supported. On the other hand, repeating the experiment with many different pseudorandom sequences is a laborious process. AIMS This study aimed to suggest an efficient method for choosing the optimal stimulus sequence based on a fast test and simple measures to increase the performance and minimize the time consumption for research trials. METHODS A total of 21 healthy subjects were included in an online wheelchair control task and completed the same task using stimuli based on the m-code, the gold-code, and the Barker-code. Correct/incorrect identification and time consumption were obtained for each identification. Subject-specific templates were characterized and used in a forward-step first-order model to predict the chance of completion and accuracy score. RESULTS No specific pseudorandom sequence showed superior accuracy on the group basis. When isolating the individual performances with the highest accuracy, time consumption per identification was not significantly increased. The Accuracy Score aids in predicting what pseudorandom sequence will lead to the best performance using only the templates. The Accuracy Score was higher when the template resembled a delta function the most and when repeated templates were consistent. For completion prediction, only the shape of the template was a significant predictor. CONCLUSIONS The simple and fast method presented in this study as the Accuracy Score, allows c-VEP based BCI systems to support multiple pseudorandom sequences without increase in trial length. This allows for more personalized BCI systems with better performance to be tested without increased costs.
منابع مشابه
Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials
A brain-computer interface (BCI) based on code modulated visual evoked potentials (c-VEP) is among the fastest BCIs that have ever been reported, but it has not yet been given a thorough study. In this study, a pseudorandom binary M sequence and its time lag sequences are utilized for modulation of different stimuli and template matching is adopted as the method for target recognition. Five exp...
متن کاملA high-speed BCI based on code modulation VEP.
Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thi...
متن کاملAn electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study
A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be eli...
متن کاملOnline Adaptation of a c-VEP Brain-Computer Interface(BCI) Based on Error-Related Potentials and Unsupervised Learning
The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two differe...
متن کاملAn automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.
OBJECTIVE This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. METHODS The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017